
Use Logical Decoding to
build your own
application cache
By Blagoj Atanasovski

Powered by

Who am I
● Software Engineer at Sorsix

○ https://www.sorsix.com/

● I work on:
○ Backends for Web Applications
○ Solutions for Fast Data Processing
○ And other stuff

https://www.sorsix.com/

Caching
● A cache is a hardware or software component that

○ stores data so that future requests for that data can be served faster
○ might be the result of an earlier computation
○ or a copy of data stored elsewhere

● Hits are served by reading data from the cache
○ faster than recomputing a result or reading from a slower data store
○ the more requests served from the cache, the faster the system performs

Different caches
● Local browser cache

○ On clients computer
○ HTML, CSS, JavaScript, graphics or other multimedia files
○ Only good for static files - content is not static

● Web cache (HTTP cache)
○ Web server, CDN or ISP stores copies of documents passing through it
○ Cross-requests cache
○ Only good for static files
○ Client may request fresh copy explicitly, max-age, last-modified header,

PUT/POST/DELETE invalidation

Different caches - Application cache
● Cache in our application (business logic)

○ You can cache everything very easy and fast
○ You can read from the cache also easy and fast
○ Invalidating it in a correct moment is nightmare

● Types of application cache
○ In Process

■ Same heap - super fast, any object, no serialization, perfect for single node
applications

■ No sharing between servers, gone on restart
○ Out-of-process

■ Shared cache between servers, can handle application restart
■ Serialization (same network, different network),

● Cache is between database and business logic
○ Module is responsible for everything cache related
○ All read/write operations go through the module
○ Good luck introducing this to a large codebase
○ What about foreign keys to your cached data?
○ Can you distribute it?
○ You can use an existing solution

■ How many out there with persistence in Postgres?
■ Are you going to use NoSQL?
■ What if you need to rollback?

○ Build your own
■ What we did, but a bit differently

Application cache - Invalidation

DB
(persistence)

API

Business
Logic

Cache

What is logical
decoding?

Write-Ahead Log (WAL)
● Ensuring data integrity.
● Changes to data files must be written only after those changes have been

logged
● After log records describing the changes have been flushed to permanent

storage.
● No need to flush data pages to disk on every transaction commit

Logical Decoding
● Introduced in 9.4
● Plugin infrastructure (Extensible, Adaptable)
● The process of extracting all persistent changes to a databases tables into

○ Coherent
○ easy to understand format
○ interpreted without detailed knowledge of the database's internal state.

● Implemented by decoding the contents of the write-ahead log
○ into an application-specific form such as a stream of tuples or SQL statements

● Relies on Replication Slots

Replication Slots
● In the context of logical replication

○ Stream of changes

○ Can be replayed to a client in the order they were made on the origin server

○ Each slot streams a sequence of changes from a single database.

● Each has an identifier that is unique across all databases in a cluster

● Persisted independently of the connection

● Crash-safe

Replication Slots
● Each change is emitted only once

○ Current position of each slot is persisted only at checkpoint

○ In case of a crash, the slot returns to an earlier LSN

○ Changes will be resent on server restart

● Up to logical decoding clients to handle same message more than once

○ May record the last LSN they saw

Logical Decoding Plugins
● The format in which those changes are streamed is determined by the

output plugin used

● An example plugin is provided in the PostgreSQL distribution

● Additional plugins can be written to extend the choice of available formats

without modifying any core code

● Every output plugin has access to each individual
○ new row produced by INSERT

○ old new row version created by UPDATE

○ The id and old version of a row removed with DELETE

Example Logical Decoding Output

Logical Decoding Plugins
● Changes can be consumed

○ using the streaming replication protocol

○ Or by calling functions via SQL

● It is the responsibility of the plugin to produce the desired output the

consumer expects and to filter out unnecessary changes

Example Output of Wal2Json

Building our cache

An app and a database

DB
(persistence)

API Business
Logic

An app and a database

API Business
Logic

An app and a database

API Business
Logic

Re
pl

ic
at

io
n

Sl
ot

 S
tr

ea
m

An app and a database

API Business
Logic

Re
pl

ic
at

io
n

Sl
ot

 S
tr

ea
m

DB
Listener

1. Connection management
2. Non-semantic parsing
3. Basic filtering

An app and a database

API Business
Logic

Re
pl

ic
at

io
n

Sl
ot

 S
tr

ea
m

DB
Listener

1. Connection management
2. Non-semantic parsing
3. Basic filtering

Change
Distributor

Change
Queues

...

Based on a configurable
criteria submit change to
one queue

An app and a database

API Business
Logic

Re
pl

ic
at

io
n

Sl
ot

 S
tr

ea
m

DB
Listener

1. Connection management
2. Non-semantic parsing
3. Basic filtering

Change
Distributor

Change
Queues

...

Based on a configurable
criteria submit change to
one queue

Queues keep the order of
modifications for single p.k. values
while still enabling concurrent
processing to take place

An app and a database

API Business
Logic

Re
pl

ic
at

io
n

Sl
ot

 S
tr

ea
m

DB
Listener

1. Connection management
2. Non-semantic parsing
3. Basic filtering

Change
Distributor

Change
Queues

...

Based on a configurable
criteria submit change to
one queue

Queues keep the order of
modifications for single p.k. values
while still enabling concurrent
processing to take place

Domain Specific
Implementation

Worker

Worker

Worker

..

1. Semantic
parsing
2. Domain
specific filtering

An app and a database

API Business
Logic

Re
pl

ic
at

io
n

Sl
ot

 S
tr

ea
m

DB
Listener

1. Connection management
2. Non-semantic parsing
3. Basic filtering

Change
Distributor

Change
Queues

...

Based on a configurable
criteria submit change to
one queue

Queues keep the order of
modifications for single p.k. values
while still enabling concurrent
processing to take place

Worker

Worker

Worker

..

1. Semantic
parsing
2. Domain
specific filtering

Cached
Data

Structure

Domain Specific
Implementation

An app and a database

API Business
Logic

Re
pl

ic
at

io
n

Sl
ot

 S
tr

ea
m

DB
Listener

1. Connection management
2. Non-semantic parsing
3. Basic filtering

Change
Distributor

Change
Queues

...

Based on a configurable
criteria submit change to
one queue

Queues keep the order of
modifications for single p.k. values
while still enabling concurrent
processing to take place

Worker

Worker

Worker

..

1. Semantic
parsing
2. Domain
specific filtering

Cached
Data

Structure

Cache
API

Domain Specific
Implementation

Advantages of logical decoding for caches
● Consistency and invalidation become trivial

○ No need to change your application code to update the cache every time you write
something to the database that should be cached

○ No need for complex caches that handle the write-back for you (can you trust them?)
○ No need to worry about constraints failing after you’ve updated the cache
○ No expensive queries needed to keep cache up to date

Advantages of logical decoding for caches
● Separate development

○ You can work on your cache independently
○ Only need to know what data needs to be cached, and define an access method
○ Don’t need to know where the cache is going to be used
○ Focus on the logical decoding stream

Advantages of logical decoding for caches
● Adoption can be one step at a time

○ The cache is independent, start using it one query at a time
○ Gradual adoption
○ Safe, can always fall back to the database
○ Impact can be measured with each step
○ No changes needed for saving/updating values
○ Can choose if a stale value is ok or latest one is required for each requirement

Sorsix Pinga
Example and Results

Sorsix Pinga
● National end to end EHR platform
● Serving a combined 10 million population
● Running live in Macedonia & Serbia

Sorsix Pinga Rollout in Serbia - serbia-rollout.sorsix.com/

https://serbia-rollout.sorsix.com/
https://docs.google.com/file/d/1qNqmpsG62BoLSUYn_7yXTmo3Sl0anA_-/preview

Live Referral and Prescription Dashboard

https://docs.google.com/file/d/1qbZN1RSaiWzv-W9_rfmsb3-v_OPEpNNP/preview

Sorsix Pinga

PINGA DB

PINGA COREPINGA API

3M+ REST API
Requests / Day

99.99% Uptime

3TB DB Size

50M+
Transactions/Day

Daily Peaks 10k+
transactions/sec

30+ application
servers

30GB+ Audit/Log
Data (ELK)

3GB / Day New
structured data

One Master
& One Hot-Standby
Replica for Disaster

Recovery

PostgreSQL is KING !

Sorsix Pinga - Issues
● Setup

○ Database optimized for fast insert and update
○ Indexes on important columns

● Requirement
○ Aggregate and window queries that look ahead in the future
○ Selection based on user input (can be a combination from 1 to 10 different predicates)

● Problem
○ Requirement is executed by almost every user every time they use the system
○ Queries in requirement run in > 4 seconds time

Sorsix Pinga - How to fix it
● Constraints

○ System is live
○ System handles the most crucial of personal data
○ The more limited a change is - the more safe it is
○ The faster a change is implemented - the more benefit there is

● Solution
○ Build an independent cache
○ Integrate cache one query at a time
○ Fail-safe in case cache fails - just execute old code (go to db)

Results
● From PgBadger
● The top 5 out of the top 10 slowest queries were

replaced with requests to the cache
○ Average between 3.1s and 4.6s

Results
● From PgBadger
● The top 5 out of the top 10 slowest queries were

replaced with requests to the cache
○ Average between 3.1s and 4.6s

● Cache returns a result on average
○ in 0.2s (50ms lookup +150ms transfer and

serialization)
○ For queries 1, 2, 4 and 7
○ 4.5s for query 9

Results - Total Time
● Number of times query is executed:

○ Q1 - 18,474
○ Q2 - 18,785
○ Q4 - 7,333
○ Q7 - 6,146
○ Q9 - 3,812

● DB Total Time: 168h20m (on all queries)

Results - Total Time
● Speedup per query:

○ Q1 - 18.19
○ Q2 - 15.62
○ Q4 - 22.18
○ Q7 - 20.43
○ Q9 - 1.04

● DB Total Time: 168h20m (on all queries)

● Saved Time: 48h21m

28.72%

