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Who am I
● Software Engineer at Sorsix 

○ https://www.sorsix.com/

● I work on:
○ Backends for Web Applications
○ Solutions for Fast Data Processing
○ And other stuff

https://www.sorsix.com/


Caching
● A cache is a hardware or software component that

○ stores data so that future requests for that data can be served faster
○ might be the result of an earlier computation
○ or a copy of data stored elsewhere

● Hits are served by reading data from the cache
○ faster than recomputing a result or reading from a slower data store
○ the more requests served from the cache, the faster the system performs



Different caches
● Local browser cache

○ On clients computer
○ HTML, CSS, JavaScript, graphics or other multimedia files
○ Only good for static files - content is not static

● Web cache (HTTP cache)
○ Web server, CDN or ISP  stores copies of documents passing through it
○ Cross-requests cache
○ Only good for static files
○ Client may request fresh copy explicitly, max-age, last-modified header, 

PUT/POST/DELETE invalidation



Different caches - Application cache
● Cache in our application (business logic)

○ You can cache everything very easy and fast
○ You can read from the cache also easy and fast
○ Invalidating it in a correct moment is nightmare

● Types of application cache
○ In Process

■ Same heap - super fast, any object, no serialization, perfect for single node 
applications

■ No sharing between servers, gone on restart
○ Out-of-process

■ Shared cache between servers, can handle application restart
■ Serialization (same network, different network), 



● Cache is between database and business logic
○ Module is responsible for everything cache related
○ All read/write operations go through the module
○ Good luck introducing this to a large codebase
○ What about foreign keys to your cached data?
○ Can you distribute it? 
○ You can use an existing solution

■ How many out there with persistence in Postgres?
■ Are you going to use NoSQL?
■ What if you need to rollback?

○ Build your own
■ What we did, but a bit differently

Application cache - Invalidation
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What is logical
decoding?



Write-Ahead Log (WAL)
● Ensuring data integrity.
● Changes to data files must be written only after those changes have been 

logged
● After log records describing the changes have been flushed to permanent 

storage. 
● No need to flush data pages to disk on every transaction commit



Logical Decoding
● Introduced in 9.4
● Plugin infrastructure (Extensible, Adaptable)
● The process of extracting all persistent changes to a databases tables into 

○ Coherent
○ easy to understand format
○ interpreted without detailed knowledge of the database's internal state.

● Implemented by decoding the contents of the write-ahead log
○ into an application-specific form such as a stream of tuples or SQL statements

● Relies on Replication Slots



Replication Slots
● In the context of logical replication

○ Stream of changes

○ Can be replayed to a client in the order they were made on the origin server

○ Each slot streams a sequence of changes from a single database.

● Each has an identifier that is unique across all databases in a cluster

● Persisted independently of the connection

● Crash-safe



Replication Slots
● Each change is emitted only once

○ Current position of each slot is persisted only at checkpoint

○ In case of a crash, the slot returns to an earlier LSN

○ Changes will be resent on server restart

● Up to logical decoding clients to handle same message more than once

○ May record the last LSN they saw



Logical Decoding Plugins
● The format in which those changes are streamed is determined by the 

output plugin used

● An example plugin is provided in the PostgreSQL distribution

● Additional plugins can be written to extend the choice of available formats 

without modifying any core code

● Every output plugin has access to each individual
○ new row produced by INSERT

○ old new row version created by UPDATE

○ The id and old version of a row removed with DELETE 



Example Logical Decoding Output



Logical Decoding Plugins
● Changes can be consumed

○ using the streaming replication protocol 

○ Or by calling functions via SQL

● It is the responsibility of the plugin to produce the desired output the 

consumer expects and to filter out unnecessary changes



Example Output of Wal2Json



Building our cache
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Advantages of logical decoding for caches
● Consistency and invalidation become trivial

○ No need to change your application code to update the cache every time you write 
something to the database that should be cached

○ No need for complex caches that handle the write-back for you (can you trust them?)
○ No need to worry about constraints failing after you’ve updated the cache
○ No expensive queries needed to keep cache up to date



Advantages of logical decoding for caches
● Separate development

○ You can work on your cache independently
○ Only need to know what data needs to be cached, and define an access method
○ Don’t need to know where the cache is going to be used
○ Focus on the logical decoding stream



Advantages of logical decoding for caches
● Adoption can be one step at a time

○ The cache is independent, start using it one query at a time
○ Gradual adoption
○ Safe, can always fall back to the database
○ Impact can be measured with each step
○ No changes needed for saving/updating values
○ Can choose if a stale value is ok or latest one is required for each requirement



Sorsix Pinga 
Example and Results



Sorsix Pinga
● National end to end EHR platform
● Serving a combined 10 million population
● Running live in Macedonia & Serbia 



Sorsix Pinga Rollout in Serbia - serbia-rollout.sorsix.com/ 

https://serbia-rollout.sorsix.com/
https://docs.google.com/file/d/1qNqmpsG62BoLSUYn_7yXTmo3Sl0anA_-/preview


Live Referral and Prescription Dashboard

https://docs.google.com/file/d/1qbZN1RSaiWzv-W9_rfmsb3-v_OPEpNNP/preview


Sorsix Pinga

PINGA DB

PINGA COREPINGA API

3M+ REST API 
Requests / Day

99.99% Uptime

3TB DB Size

50M+ 
Transactions/Day

Daily Peaks 10k+ 
transactions/sec

30+ application 
servers

30GB+ Audit/Log 
Data (ELK)

3GB / Day New 
structured data

One Master 
& One Hot-Standby 
Replica for Disaster 

Recovery

PostgreSQL is KING !



Sorsix Pinga - Issues
● Setup

○ Database optimized for fast insert and update
○ Indexes on important columns

● Requirement
○ Aggregate and window queries that look ahead in the future
○ Selection based on user input (can be a combination from 1 to 10 different predicates)

● Problem
○ Requirement is executed by almost every user every time they use the system
○ Queries in requirement run in > 4 seconds time



Sorsix Pinga - How to fix it
● Constraints

○ System is live
○ System handles the most crucial of personal data
○ The more limited a change is - the more safe it is
○ The faster a change is implemented - the more benefit there is

● Solution
○ Build an independent cache
○ Integrate cache one query at a time
○ Fail-safe in case cache fails - just execute old code (go to db)



Results
● From PgBadger
● The top 5 out of the top 10 slowest queries were 

replaced with requests to the cache
○ Average between 3.1s and 4.6s



Results
● From PgBadger
● The top 5 out of the top 10 slowest queries were 

replaced with requests to the cache
○ Average between 3.1s and 4.6s

● Cache returns a result on average
○ in 0.2s (50ms lookup +150ms transfer and 

serialization)
○ For queries 1, 2, 4 and 7
○ 4.5s for query 9



Results - Total Time
● Number of times query is executed:

○ Q1 - 18,474
○ Q2 - 18,785
○ Q4 - 7,333
○ Q7 - 6,146
○ Q9 - 3,812

● DB Total Time: 168h20m (on all queries)



Results - Total Time
● Speedup per query:

○ Q1 - 18.19
○ Q2 - 15.62
○ Q4 - 22.18
○ Q7 - 20.43
○ Q9 - 1.04

● DB Total Time: 168h20m (on all queries)

● Saved Time: 48h21m

28.72%


